I B.TECH - EXAMINATIONS, DECEMBER - 2010

 ELECTRONIC DEVICES AND CIRCUITS

 ELECTRONIC DEVICES AND CIRCUITS
 (COMMON TO ECE, CSE, EIE, BME, IT, E.CON.E, CSS, ETM, ECC \& ICE)
 Time: 3hours
 Max.Marks:80

 Answer any FIVE questions

 Answer any FIVE questions

 All questions carry equal marks

 All questions carry equal marks}

1. Compare the motion and trajectories of electron when placed:
i) Only in electric field
ii) Only in Magnetic field
iii) Combined electric and magnetic fields.
2.a) Compare the characteristics of a p-n Junction diode, zener diode and tunnel diode.
b) What is Fermi-level? Prove that the Fermi level in an ' n '-type material is much closed to conduction band.
3.a) Derive the expression for ripple factor, regulation and rectification efficiency of a half wave rectifier.
b) Compare Full wave and Bridge rectifiers from the view point of ripple factor, regulation, rectification efficiency and PIV ratings of diodes.
[8+8]
4.a) Explain how transistor acts as an amplifier.
b) What is pinch-off voltage? Sketch the region in a bar of FET channel and explain. From the transfer characteristic relation using $g_{m}=\frac{\partial i_{D}}{\partial V_{G S}} / V_{D S}$, show that

$$
\begin{equation*}
g_{m}=g_{m o}\left[1-\frac{v_{G S}}{v_{p}}\right] \text { Where } g_{m o}=\frac{-2 I_{D S S}}{v_{p}} \text {. } \tag{8+8}
\end{equation*}
$$

5.a) Draw the circuit diagram of a fixed bias and self bias circuits and derive the expressions for the stability factors.
b) Explain the term "Thermal Runaway".
6. With the help of approximate hybrid model. Derive the expressions for current gain, input impedance, output impedance and voltage gain of a CC amplifier. [16]
7.a) Draw the block diagram of a feed back amplifier and derive the closed loop transfer function.
b) Derive the expressions for A_{v}, Z, Z and A_{i} of a voltage shunt feedback amplifier.
8.a) Give the circuit diagram of a colpitts oscillator and explain its working.
b) What is the importance of crystal oscillator? Give the equivalent circuit of a quartz crystal.
[8+8]

I B.TECH - EXAMINATIONS, DECEMBER - 2010

ELECTRONIC DEVICES AND CIRCUITS

(COMMON TO ECE, CSE, EIE, BME, IT, E.CON.E, CSS, ETM, ECC \& ICE)

Answer any FIVE questions
 All questions carry equal marks

1.a) Derive the expression for ripple factor, regulation and rectification efficiency of a half wave rectifier.
b) Compare Full wave and Bridge rectifiers from the view point of ripple factor, regulation, rectification efficiency and PIV ratings of diodes.
2.a) Explain how transistor acts as an amplifier.
b) What is pinch-off voltage? Sketch the region in a bar of FET channel and explain. From the transfer characteristic relation using $g_{m}=\frac{\partial i_{D}}{\partial V_{G S}} / V_{D S}$, show that

$$
\begin{equation*}
g_{m}=g_{m o}\left[1-\frac{v_{G S}}{v_{p}}\right] \text { Where } g_{m o}=\frac{-2 I_{D S S}}{v_{p}} \text {. } \tag{8+8}
\end{equation*}
$$

3.a) Draw the circuit diagram of a fixed bias and self bias circuits and derive the expressions for the stability factors.
b) Explain the term "Thermal Runaway".
4. With the help of approximate hybrid model. Derive the expressions for current gain, input impedance, output impedance and voltage gain of a CC amplifier. [16]
5.a) Draw the block diagram of a feed back amplifier and derive the closed loop transfer function.
b) Derive the expressions for A_{v}, Z_{i}, Z_{0} and A_{i} of a voltage shunt feedback amplifier.
6.a) Give the circuit diagram of a colpitts oscillator and explain its working.
b) What is the importance of crystal oscillator? Give the equivalent circuit of a quartz crystal.
[8+8]
7. Compare the motion and trajectories of electron when placed:
i) Only in electric field
ii) Only in Magnetic field
iii) Combined electric and magnetic fields.
8.a) Compare the characteristics of a p-n Junction diode, zener diode and tunnel diode.
b) What is Fermi-level? Prove that the Fermi level in an 'n'-type material is much closed to conduction band.

I B.TECH - EXAMINATIONS, DECEMBER - 2010

ELECTRONIC DEVICES AND CIRCUITS

(COMMON TO ECE, CSE, EIE, BME, IT, E.CON.E, CSS, ETM, ECC \& ICE)
Time: 3hours
Max.Marks:80

Answer any FIVE questions
 All questions carry equal marks

1.a) Draw the circuit diagram of a fixed bias and self bias circuits and derive the expressions for the stability factors.
b) Explain the term "Thermal Runaway".
2. With the help of approximate hybrid model. Derive the expressions for current gain, input impedance, output impedance and voltage gain of a CC amplifier. [16]
3.a) Draw the block diagram of a feed back amplifier and derive the closed loop transfer function.
b) Derive the expressions for A_{v}, Z_{i}, Z_{0} and A_{i} of a voltage shunt feedback amplifier.
4.a) Give the circuit diagram of a colpitts oscillator and explain its working.
b) What is the importance of crystal oscillator? Give the equivalent circuit of a quartz crystal.
5. Compare the motion and trajectories of electron when placed:
i) Only in electric field
ii) Only in Magnetic field
iii) Combined electric and magnetic fields.
6.a) Compare the characteristics of a p-n Junction diode, zener diode and tunnel diode.
b) What is Fermi-level? Prove that the Fermi level in an ' n '-type material is much closed to conduction band.
7.a) Derive the expression for ripple factor, regulation and rectification efficiency of a half wave rectifier.
b) Compare Full wave and Bridge rectifiers from the view point of ripple factor, regulation, rectification efficiency and PIV ratings of diodes.
8.a) Explain how transistor acts as an amplifier.
b) What is pinch-off voltage? Sketch the region in a bar of FET channel and explain. From the transfer characteristic relation using $g_{m}=\frac{\partial i_{D}}{\partial V_{G S}} / V_{D S}$, show that $g_{m}=g_{m o}\left[1-\frac{v_{G S}}{v_{p}}\right]$ Where $g_{m o}=\frac{-2 I_{\text {DSS }}}{v_{p}}$.

I B.TECH - EXAMINATIONS, DECEMBER - 2010

ELECTRONIC DEVICES AND CIRCUITS

(COMMON TO ECE, CSE, EIE, BME, IT, E.CON.E, CSS, ETM, ECC \& ICE)
Time: 3hours
Max.Marks:80

Answer any FIVE questions
 All questions carry equal marks

1.a) Draw the block diagram of a feed back amplifier and derive the closed loop transfer function.
b) Derive the expressions for A_{v}, Z, Z and A_{i} of a voltage shunt feedback amplifier.
2.a) Give the circuit diagram of a colpitts oscillator and explain its working.
b) What is the importance of crystal oscillator? Give the equivalent circuit of a quartz crystal.
[8+8]
3. Compare the motion and trajectories of electron when placed:
i) Only in electric field
ii) Only in Magnetic field
iii) Combined electric and magnetic fields.
4.a) Compare the characteristics of a p-n Junction diode, zener diode and tunnel diode.
b) What is Fermi-level? Prove that the Fermi level in an ' n '-type material is much closed to conduction band.
5.a) Derive the expression for ripple factor, regulation and rectification efficiency of a half wave rectifier.
b) Compare Full wave and Bridge rectifiers from the view point of ripple factor, regulation, rectification efficiency and PIV ratings of diodes.
6.a) Explain how transistor acts as an amplifier.
b) What is pinch-off voltage? Sketch the region in a bar of FET channel and explain. From the transfer characteristic relation using $g_{m}=\frac{\partial i_{D}}{\partial V_{G S}} / V_{D S}$, show that $g_{m}=g_{m o}\left[1-\frac{v_{G S}}{v_{p}}\right]$ Where $g_{m o}=\frac{-2 I_{D S S}}{v_{p}}$.
7.a) Draw the circuit diagram of a fixed bias and self bias circuits and derive the expressions for the stability factors.
b) Explain the term "Thermal Runaway".
8. With the help of approximate hybrid model. Derive the expressions for current gain, input impedance, output impedance and voltage gain of a CC amplifier. [16]

